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Abstract

This paper investigates the integration of machine learning techniques with classical
optimization methodologies to address the Capacitated Vehicle Routing Problem (CVRP),
a well-known NP-hard problem in logistics. Traditional approaches leverage heuristics and
metaheuristics, such as GRASP and VND, but often struggle with adaptability and
efficiency at large scale. Recent advancements in deep learning offer new opportunities for
enhanced solution quality and computational efficiency. This study proposes a novel hybrid
methodology combining Greedy Randomized Adaptive Search Procedure (GRASP),
Variable Neighborhood Descent (VND), and a Graph Isomorphism Network with Edge
Features (GINE). The GINE model classifies initial solutions as promising or unpromising,
enabling selective local search refinement and potential computational savings. Empirical
evaluation on benchmark CVRP instances demonstrates that the hybrid GINE-GRASP-
VND approach achieves moderate classification accuracy, generalizes beyond training
sizes, and shows stronger improvements on large problems. Results suggest the value of
machine learning augmentation in metaheuristics but highlight the challenges of feature
design and generalization.
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1. Introduction

Operations research (OR) provides mathematical models for real-world logistics problems,
making use of heuristics, metaheuristics, and, more recently, machine learning (ML) for
improved solution quality. A rapidly evolving field in OR is the integration of ML and
artificial intelligence (AI) with classical analytical techniques [1]. This synergy is
transforming operational efficiency and enabling more strategic planning, as modern
algorithms enhance both problem-solving capabilities and data-driven decision-making in
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dynamic business environments. ML algorithms are well known for their pattern
recognition on data that have no clear mathematical formulation (e.g. images, text and
voice). Similarly, combinatorial optimization (CO) tasks involving graph-based data are
well-suited to leverage ML methodologies, supporting advanced solution strategies for
challenging real-world problems [2].

The Vehicle Routing Problem (VRP) is one of the most fundamental and widely studied
combinatorial optimization problems in OR and Logistics. It is concerned with the design
of an optimal set of routes between geographically scattered customers that require service
and a depot with a fleet of vehicles [3]. Depending on the constraints of the problem (e.g.
capacities, time windows, multi-depots, etc.) multiple variants of VRP exist [4]. This paper
focuses on the Capacitated Vehicle Routing Problem (CVRP), since they provide a solid
start for implementing a new method.

VRPs — being NP-hard problems —traditionally have been tackled using three categories of
approaches: exact algorithms, approximation algorithms and heuristics/metaheuristics. An
exact method guarantees to find the optimal solution to a CO problem. While being
effective, they require exponential computational power in large problems, making them
unsuitable to be used. Heuristics and metaheuristics are problem-solving strategies
designed to find good solutions quickly, but without guarantees of how close they are to the
optimum. Among these approaches, Greedy Randomized Adaptive Search Procedures
(GRASP) and Variable Neighborhood Descent (VND), often used within a Variable
Neighborhood Search (VNS) framework, have emerged as particularly effective. GRASP
is an iterative multi-start metaheuristic, where each iteration consists of a randomized
greedy construction phase followed by a local search phase that attempts to improve the
constructed solution. VND, on the other hand, is a systematic local search strategy that
explores a sequence of neighborhoods, moving to a new solution whenever an improvement
is found and restarting the sequence of neighborhoods [5]. The combination of GRASP with
VND has proven very competitive for routing problems, as it couples diversified solution
construction with an intensive and structured local improvement phase. However, the
repeated application of local search to many initial solutions can be computationally
demanding, which opens the door to intelligent mechanisms that decide where to invest
search effort.

Most recent approaches for facing VRP involve enhancing traditional approximation
methods with ML. In end-to-end learning approaches either Supervised Learning (SL) or
Reinforcement Learning (RL) is employed to address the problem comprehensively, from
initial formulation to final solution. In contrast, hybrid approaches incorporate learning
methods either as principal mechanism for generating feasible and efficient solutions —
subsequently refined though construction heuristics — or as auxiliary components that assist
in resolving subproblems within conventional optimization frameworks [6]. In this paper a
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hybrid approach will be implemented between a well-known metaheuristic named GRASP
and GINE — an SL method that belongs to the family of Graph Neural Networks (GNNs).

GNNs have emerged as a pivotal paradigm within DL as the generalization of an attention
mechanism for the graph domain, designed to operate directly on non-Euclidean data
structures where relationships among entities are naturally represented as graphs. Unlike
traditional ML models that assume data points are independent and identically distributed,
GNNs explicitly model interdependencies between nodes through edges, making them
suitable for a wide array of applications from chemistry to transportation systems. The roots
of GNN s trace back to recursive neural networks in the 1990s, which were first applied to
directed acyclic graphs [7]. Afterwards RNNs and feedforward neural networks introduced
for processing arbitrary graph-structured data. These early models relied on iterative
message-passing until convergence, which limited scalability. The breakthrough came with
the integration of convolutional principles into graph domains, leading to Graph
Convolutional Networks (GCNs) that aggregate local neighborhood information in a
feedforward manner. This shift not only addressed efficiency but also aligned GNNs with
the successful convolutional architectures of image analysis.

Over time, several variants of GNN architectures have emerged [7]. Recurrent GNNs
(RecGNNis) represent the earliest family, where node representations are iteratively updated
until convergence. GCNs, both spectral-based and spatial-based, dominate current practice
thanks to their efficiency and scalability. Graph Attention Networks (GATSs) introduce an
attention mechanism to weight neighbor contributions adaptively, while Gated Attention
Networks (GaANs) refine this idea by incorporating gating mechanisms that regulate
multiple attention heads, improving stability and interpretability in complex graph
scenarios. Graph Auto-Encoders (GAEs) extend this paradigm for unsupervised
representation learning, focusing on link prediction and graph generation. Spatial—
Temporal GNNs (STGNNs) add a temporal dimension to capture dynamic interactions in
time-evolving systems, with direct relevance to applications such as traffic forecasting and
dynamic routing. Applications of GNNs are diverse and extend across both structural and
non-structural domains. Importantly, GNNs have begun to transform CO, where problems
such as the TSP and the VRP can be modeled as graphs of customers and routes [6]. Despite
their versatility, GNNs still face significant challenges [6]. Current research increasingly
explores hybridization with reinforcement learning and metaheuristic —strategies,
particularly in the optimization of vehicle routing and logistics operations.

The remainder of this paper is structured as follows. Section 2 presents the proposed
methodology and its main components. Section 3 reports and analyzes the computational
results. Section 4 concludes the paper and outlines directions for future research.
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2. Proposed methodology

In this section, we present the proposed deep learning approach. More specifically a simple
hybrid of GRASP with BVND will be enhanced with a GINE model, which is a better
version of GIN, since it adds an edge encoder to each message passing layer. [ n the next
subchapters each component of the scheme is explained.

2.1 A Hybrid Metaheuristic

Taking inspiration from [8] a GRASP procedure was hybridized with a BVND. The GRASP
procedure following the quality-based scheme for the RCL — i.e. selecting elements based
on travel cost c; j between two nodes/customers i and j where cpin < ¢ i < Cmin T
A(Cmax — Cmin) — Will perform a greedy randomized construction. In other words, the
method starts from the depot and assigns a route towards a node/customer that is selected
randomly from the created RCL list. For the CVRP problem the feasibility of the specific
selection is evaluated with capacity constraint. The procedure iteratively assigns customers
to a route until the vehicle has no capacity left, so it returns to the depot. That is a closed
loop. Then, it starts again with a new vehicle. All customers must be serviced and passed
only once from a vehicle. When that happens the total cost of the solution — called initial
solution — is computed.

It should be noted that the majority of VRP problems have a 2D Euclidean edge weight
type, which means the cost of (undirected) edges are computed by the Euclidean distance
of their corresponding nodes. The nodes of a VRP problem are projected in a Cartesian
plane with x- and y-axis with only positive values between 0 to 1 or 0 to 100. So, for two
nodes i, j with coordinates (x;, y;) and (x;,y;) that are connected, the distance/cost is

c(i,j) = floor (J(xi — X))+ i —yp)* + 0.5)

where floor rounds down the value to the nearest integer.

When the construction phase ends the initial solution is improved with a local search
algorithm. A BVND was selected, which improves the solution by searching firstly the
intra-route neighborhoods — i.e. changes in a route — and then inter-route neighborhoods —
i.e. changes between routes. The procedure uses the 2-opt, swap and relocate for intra-route
(with that order) and 1-0 exchange (moving a customer from one route to another) and 1-1
exchange (switching customers between routes) for inter-route while respecting the
capacity constraint. To be more precise the sequence follows this pattern:

1. Intra-route VND: It runs 2-opt to convergence, then swap and then relocate. If
anyone improves it keeps applying the same operator, then moves to the next
operator. If there is no further improvement, then it follows the inter-route
operators.

Pag.412 /444
Article’s total number of pages: 14



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025

2. Inter-route VND: 1-0 exchange is applied with first improvement meaning that as

soon as the cost is improved it restarts the specific inter-route operator. If there is
no further improvement, then 1-1 exchange follows with the same procedure.

3. After local-search loop, if the total cost is improved, the entire cycle is repeated.
Otherwise, it stops.

When the local-search loop breaks the solution is saved. Then the algorithm starts again
with the construction of a new solution. If that solution is better, it is the new best solution.
The procedure stops when exceeding the maximum iterations or time limit.

2.2 A Hybrid ML Approach

The concept of ISC introduced in [8] is a hybrid approach that predicts if a local-search
algorithm should be applied to initial solutions constructed from a greedy algorithm like
GRASP. That paper used a Random Forest as an ML classifier.

In this paper a GNN will be used as a deep learning classifier, named edge-aware GIN -
also called GINE — which will be trained with several features extracted from graphs of
initial solutions. GINE incorporates edge features e,,, into the aggregation procedure by
projecting them to the node hidden size either by a learned linear layer or an edge encoder.
The linear projection that occurs is from a basic MLP. Thus, the new message passing
update is expressed as:

D = MLPO | (14 €®)-n + Z (D + edge MLPD (eyy))
UEN (v)

The GRASP-VND metaheuristic will be enhanced with the GINE trained model. Then for
each initial solution constructed the model will predict if the local search phase can run
otherwise start the initial construction again. In that case some solutions will pass the
classification and other will be denied.

2.3 Model Architecture

At the input stage, the model expects graphs, which include node features, edge indices,
edge features, and a batch index to support mini-batch training. Before any graph
convolutions are applied, node features are projected into a hidden-dimensional
representation through a linear transformation. This ensures that the input is embedded into
a common latent space that subsequent layers can process effectively. Let X € RNxnodedim
the input data where N is the number of nodes and node_dim the number of features per

node. Before the convolutions it is transformed into H(©®) e RN*hidden_size
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The main body of the network consists of stacked GINE convolutional layers, each
parameterized by a small MLP. This MLP follows the structure of a linear transformation,
a ReLU nonlinearity, and another linear transformation, thereby allowing the convolution
to learn complex transformations of messages passed between nodes. Each GINE layer
updates node embeddings by combining information from neighboring nodes and the edges
connecting them, which distinguishes it from simpler graph convolutions that only rely on
node features. After every convolution, the model applies batch normalization to stabilize
training, a ReL U activation to introduce non-linearity, and dropout to regularize and prevent
overfitting. By repeating this sequence across multiple layers, the model incrementally
enriches node representations with higher-order structural and feature-based information
from the graph. Let e € RE*€49¢-dim the edge embeddings where E is the number of edges
and edge dim the number of features per edge. Then the edges are linearly transformed to
e’ € RExhiddensize o match the dimensions of node embeddings. For a single node its

embedding h(()o) is updated by the message passing layer. More specifically the node
embeddings of neighbors of a single node — which are defined by different edge structures
— are summed with their corresponding projected edge features (the ones that are connected
with the 0 node in the example). Then the sum of all nodes is passed through ReLU and
then the message is added to the h(()o), which is scaled by epsilon €. The new node
embedding is passed to a linear transformation hidden size —hidden size, ReLU and
finally another linear transformation hidden size —hidden_size. That’s the convolution
procedure. A Batch Normalization, another ReLU and Dropout Layer follow that give an
embedding passed by one layer H(1) € RNxhidden.size That means the dimension doesn’t
change between stacked GINEconv layers.

Once the node embeddings have been updated, they are aggregated into a single graph-level
embedding through global mean pooling. This operation compresses all node-level
information into a single vector for each graph in the batch. Graph-level attributes are
concatenated with the pooled embedding. Let G € RIL0PLAIM pe the global features where
global dim is the number of global features. The single concatenated vector after L layers
is as follows

N
g = CONCATENATE <%Z hEL)' G) g € RMidden_size+global_dim

i=1
The resulting graph representation, enhanced by graph-level attributes, is then passed to a
final linear readout layer. This layer produces class logits of dimension equal to the number
of target classes (2), making the architecture suitable for supervised classification at the
graph level.

2.4 Model Training
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The neural network requires labeled training data that will try to approximate them. These
data are initial solutions generated from a GRASP procedure, which are labeled based on
being promising or unpromising solutions for implementing local search algorithm. The
labeled scheme can only be addressed by an iterative GRASP procedure. In each iteration
the initial solution is saved. Then the VND proceeds with the local search phase and
produces an improved solution whose improved cost is also stored with the corresponding
initial solution. After some iterations the procedure stops. The improved costs are used to
label the initial solutions as promising (1) and unpromising (0). A percentage A,, of solutions
with the lowest improved cost are labeled 1 and a percentage A, of solutions with the
highest improved cost are labeled 0. The remaining solutions are discarded, so the training
dataset includes only labeled data. In figure 1 the Outline of Initial Solution Classification

can be seen.
Evaluation phase '

Labeling phase Training phase

CVRP Instance

| oy |
Inpuf

Trained classifierf------

GRASP construction phase|

Initial Solution

Training procedure]

GNN model
(GINE)

VND local search algorithi

Improved
Solution

[Sorting based on improved cosj l

Dataset
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70% training
20% validation
10% test

Promising
Solution

25% promising
50% neutral
25% unpromising

)
4
[ Now B.ee\ ][ Best Solution ]
6 node attributes Solution

Training dataset 2 edge attributes

Compare solutions generated
1 global attribute

within same time limit

Figure 1. Outline of Initial Solution Classification

The data essentially is a set of routes and a label. It also contains information about the
CVRP instance, the node coordinates and demands, and the capacity and number of
vehicles. From these data node, edge and global features need to be extracted. Here are the
selected features:

e Node Features:

1. Normalized x coordinate for each node i named X; € [0,1]
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~ Xi = Xmin

Xj=—"—
Xmax — Xmin

2. Normalized y coordinate for each node i named y; € [0,1]
9, = Yi = Ymin
Ymax — Ymin
3. The demand/capacity of vehicle € [0,1]
4. The flag is_depot which is 1 id the node is the depot and 0 otherwise

5. Normalized distance to depot

xXi —x4)% + (y; — 2
dist_depot; = Vi d‘;c)zmet(e): Ya)

where diameter = max \/ (xl- — xj)z + (yi - yj)zis the diameter of the graph and
(x4, vq) are the coordinates of depot

6. The positional symmetry which addresses the position of a node in a route
with being 0 if the node is in the middle of the route and 1 near the depot.
More precisely

0,if depot
pos_sym = k-1

2 I—1- 0.5|, otherwise

where L is the length of the route (excluding depot) and k the position of the node in the
route. By taking the absolute value, we include the undirected aspect of the problem

e FEdge Features:

1. Normalized distance between nodes i and j

J(xi - xj)z +(vi - yj)z

diameter

dist =

2. The flag route_flag which is 1 if the edge belongs to the initial solution and
0 otherwise

e Global Feature:

1. The normalized weighted mean centroid to depot distance of the routes r
of the initial solution or WMCD
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R \/(Cr,x - xd)z + (Cr,y - )’d)z
WMCD = er Wr diameter

. iev, di . .
where R is the set of routes, w, = Zl;/; -, and the coordinates of centroid to depot of a
77

1 1
route Cy. ,, = |V_T|ZiEVT Xi, Cry = mZieVr Yi

The selection of the features is based on the idea of providing information about each
instance (node features 1,2,3,4,5 and edge features) and each initial solution (node feature
6 and global feature).

A full connected graph would produce many edges that would be computationally costly
for a single message passing layer, since the neighborhood of a node would be the whole
graph. For that reason, a route k-NN edge strategy is selected, which builds the edge set as
a union of two types of edges:

e k-NN edges (directed): Each node is connected to its k closest neighbors using the

X,y coordinates. These edges are directed, so if node A is among B’s neighbors, it
means B—A but it’s not guaranteed that A—B.

e route edges (bidirectional): Taken from the initial solution. Since the problem is

undirected, they are bidirectional. If a neighbor B is connected to node A in the
initial solution, then it denotes A«<B

However, the message passed comes from the neighbor nodes and their corresponding
directed edges. The route edges are applied to introduce neighbors that are outside the k
closest neighbors but are connected in an initial solution. In that way more information is
propagating through the graph.

3. Computational Results

The simple metaheuristic GRASP-VND and the enhanced version GINE-GRASP-VND are
coded in Python along with the necessary utilities. The parameter alpha that is used for
GRASP is 0.3 Some well-known and publicly available instances of CVRP are used to
evaluate the proposed methodology. From the CVRPLIB repository [9] Set A
(Augerat,1995) are used to verify the effectiveness of the ML approach. The following table
gives information about each instance:

Instances 1,6,7,11,12,13,16,18,19,23,26 and 27 from the table are selected for labeling. For
each instance the GRASP-VND is run, to generate labeled data. 25% of the solutions with
the lowest improved cost are labeled as promising solutions and 25% with the highest
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improved cost as unpromising. The remaining 50% are discarded. The following table
presents the number of labeled data per instance:

Instance # of labeled samples
A-n32-k5 81
A-n37-k5 100
A-n37-k6 101
A-n44-k6 102
A-n45-k6 100
A-n45-k7 100
A-n53-k7 128
A-n55-k9 127
A-n60-k9 150
A-n63-k10 152
A-n69-k9 177
A-n80-k10 204
Total 1522

The total of 1522 labeled samples is fed to GINE model. 70% is used as the training set,
20% as the validation set and 10% as the test set. The route k-NN edge structure is used
with k = 14. The model consists of 4 layers of GINEconv with 192 hidden dimensions. A
softmax function is used for classification, Cross-Entropy is the loss function and Adam is

the optimizer.

The neural network trained with labeled CVRP instances of node sizes 30 to 80 managed

to classify correctly only 60.12% of the training samples. The method was first tested to

assume its generality upon different sizes of nodes. It was found that instances with up to
100 customers can provide the potential effectiveness of the method.

After 68 epochs of total running time 15 min 52 s, the metrics are:

Cross-Entropy Loss = 0.6692

Classification accuracy = 0.6012, i.e. the model classifies correctly the 60.12% of
the labeled samples

True Negatives (TN)= 632, i.e. the number of samples that are truly labeled “0”
(unpromising) and are classified by the model as “0”

False Positives (FP) = 127, i.e. the number of samples that are truly labeled “0” but
are classified by the model as “1” (promising)

False Negatives (FN) = 480, i.e. the number of samples that are truly labeled “1”
but are classified by the model as “0”

True Positives (TP) = 283, i.e. the samples that are truly labeled “1” and are

classified by the model as “1”
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Since the training samples have perfectly balanced classes —i.e. 50% are “1” and 50% are
“0” — precision, recall and f1 score for the class “1” are calculated as follows:
TP

TP+FP
promising, are really promising.

e Precision =

= 69.0%, i.e. 69% of the samples the model said were

TP
TP+FN
promising solutions

e Recall =

= 37.1%, i.e the model correctly identified 37.1% of all truly

__ 4 PrecisionXRecall

e Fl= = 48.3%, i.e. the balance between precision and recall

Precision+Recall

It seems that the trained model is better than a random guessing (50%) of running VND or
not, since it identifies 60.12% of the samples. According to its precision metric, 31% of
VND runs are wasted on solutions that won’t lead to better improved solutions. On the other
hand, the recall metric point that it loses 62.9% of promising solutions meaning they never
go through VND.

Then the model was incorporated with the GRASP-VND and was compared with the simple
metaheuristic with several instances and for the same run time. When applying the
enhanced method to a large size instance it provided a significant improved solution than
the simple metaheuristic, suggesting that it exists room for improvement.

instance | GRASP-VND GINE-GRASP-VND

Mea; GAP | MeanGAP% | Accuracy | TN | TP | EN | FP

(]

A-n32-k5 1,218 0,746 0.63 29 22 19 11
A-n37-k5 4,118 2,997 0.51 49 2 48 1
A-n37-k6 3,172 3,904 0.584 45 14 37 5
A-n54-k7 5,047 4,640 0603 50 32 36 7
A-n80-k10 10,990 11,058 0.623 58 69 32 45
M'I?llg 1- 20,213 15,890 0.669 65 83 49 56

4. Conclusions

This paper investigated a hybrid machine learning approach for enhancing a classical
GRASP-BVND metaheuristic for the CVRP. The proposed method integrates an edge-
aware GINE as an ISC that predicts whether a GRASP-constructed solution is promising
enough to justify the application of a Variable Neighborhood Descent local search. The goal
is to reduce unnecessary local search calls while preserving, or ideally improving, solution
quality.
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The GINE classifier was trained on labeled initial solutions generated by GRASP-BVND
on CVRP instances with 30 to 80 customers from the Augerat Set A. Using a balanced
labeling scheme, the model achieved a classification accuracy of around 60% on held-out
data, which is only moderately better than random guessing on balanced classes. The
precision of the “promising” class shows that a non-negligible fraction of local search runs
is still wasted on unpromising solutions, while the low recall indicates that many promising
solutions are incorrectly filtered out and never improved by VND.

When the trained classifier was embedded into the GRASP-BVND framework and tested
under equal time limits, the results were mixed. On a larger instance, the enhanced method
yielded a noticeably better solution quality, suggesting that selective local search guided by
a learned model may become more beneficial as instance size grows and the cost of local
search increases.

Overall, the study provides an initial proof-of-concept that GNN-based classifiers can be
integrated into metaheuristics for VRPs, but also highlights several limitations. The current
feature set and labeling strategy appear insufficient to obtain a high-quality classifier, and
the resulting accuracy is not yet strong enough to consistently improve the metaheuristic on
standard benchmark instances. Future work should therefore focus on designing richer
graph and route features, exploring alternative labeling schemes (e.g., using continuous
improvement scores or cost-sensitive thresholds), and experimenting with more advanced
architectures or training procedures, such as cost-aware losses or ensemble methods. In
addition, extending the approach to larger and more diverse VRP variants, and integrating
it with other learning components (e.g., learned neighborhood selection or adaptive
parameter control), may further unlock the potential of machine learning—driven
metaheuristics for real-world routing applications.
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