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Abstract 

This paper investigates the integration of machine learning techniques with classical 

optimization methodologies to address the Capacitated Vehicle Routing Problem (CVRP), 

a well-known NP-hard problem in logistics. Traditional approaches leverage heuristics and 

metaheuristics, such as GRASP and VND, but often struggle with adaptability and 

efficiency at large scale. Recent advancements in deep learning offer new opportunities for 

enhanced solution quality and computational efficiency. This study proposes a novel hybrid 

methodology combining Greedy Randomized Adaptive Search Procedure (GRASP), 

Variable Neighborhood Descent (VND), and a Graph Isomorphism Network with Edge 

Features (GINE). The GINE model classifies initial solutions as promising or unpromising, 

enabling selective local search refinement and potential computational savings. Empirical 

evaluation on benchmark CVRP instances demonstrates that the hybrid GINE-GRASP-

VND approach achieves moderate classification accuracy, generalizes beyond training 

sizes, and shows stronger improvements on large problems. Results suggest the value of 

machine learning augmentation in metaheuristics but highlight the challenges of feature 

design and generalization. 
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1. Introduction 

Operations research (OR) provides mathematical models for real-world logistics problems, 

making use of heuristics, metaheuristics, and, more recently, machine learning (ML) for 

improved solution quality. A rapidly evolving field in OR is the integration of ML and 

artificial intelligence (AI) with classical analytical techniques [1]. This synergy is 

transforming operational efficiency and enabling more strategic planning, as modern 

algorithms enhance both problem-solving capabilities and data-driven decision-making in 
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dynamic business environments. ML algorithms are well known for their pattern 

recognition on data that have no clear mathematical formulation (e.g. images, text and 

voice). Similarly, combinatorial optimization (CO) tasks involving graph-based data are 

well-suited to leverage ML methodologies, supporting advanced solution strategies for 

challenging real-world problems [2]. 

The Vehicle Routing Problem (VRP) is one of the most fundamental and widely studied 

combinatorial optimization problems in OR and Logistics. It is concerned with the design 

of an optimal set of routes between geographically scattered customers that require service 

and a depot with a fleet of vehicles [3]. Depending on the constraints of the problem (e.g. 

capacities, time windows, multi-depots, etc.) multiple variants of VRP exist [4]. This paper 

focuses on the Capacitated Vehicle Routing Problem (CVRP), since they provide a solid 

start for implementing a new method. 

VRPs – being NP-hard problems –traditionally have been tackled using three categories of 

approaches: exact algorithms, approximation algorithms and heuristics/metaheuristics. An 

exact method guarantees to find the optimal solution to a CO problem. While being 

effective, they require exponential computational power in large problems, making them 

unsuitable to be used. Heuristics and metaheuristics are problem-solving strategies 

designed to find good solutions quickly, but without guarantees of how close they are to the 

optimum. Among these approaches, Greedy Randomized Adaptive Search Procedures 

(GRASP) and Variable Neighborhood Descent (VND), often used within a Variable 

Neighborhood Search (VNS) framework, have emerged as particularly effective. GRASP 

is an iterative multi-start metaheuristic, where each iteration consists of a randomized 

greedy construction phase followed by a local search phase that attempts to improve the 

constructed solution. VND, on the other hand, is a systematic local search strategy that 

explores a sequence of neighborhoods, moving to a new solution whenever an improvement 

is found and restarting the sequence of neighborhoods [5]. The combination of GRASP with 

VND has proven very competitive for routing problems, as it couples diversified solution 

construction with an intensive and structured local improvement phase. However, the 

repeated application of local search to many initial solutions can be computationally 

demanding, which opens the door to intelligent mechanisms that decide where to invest 

search effort. 

Most recent approaches for facing VRP involve enhancing traditional approximation 

methods with ML. In end-to-end learning approaches either Supervised Learning (SL) or 

Reinforcement Learning (RL) is employed to address the problem comprehensively, from 

initial formulation to final solution. In contrast, hybrid approaches incorporate learning 

methods either as principal mechanism for generating feasible and efficient solutions – 

subsequently refined though construction heuristics – or as auxiliary components that assist 

in resolving subproblems within conventional optimization frameworks [6]. In this paper a 
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hybrid approach will be implemented between a well-known metaheuristic named GRASP 

and GINE – an SL method that belongs to the family of Graph Neural Networks (GNNs). 

GNNs have emerged as a pivotal paradigm within DL as the generalization of an attention 

mechanism for the graph domain, designed to operate directly on non-Euclidean data 

structures where relationships among entities are naturally represented as graphs. Unlike 

traditional ML models that assume data points are independent and identically distributed, 

GNNs explicitly model interdependencies between nodes through edges, making them 

suitable for a wide array of applications from chemistry to transportation systems. The roots 

of GNNs trace back to recursive neural networks in the 1990s, which were first applied to 

directed acyclic graphs [7]. Afterwards RNNs and feedforward neural networks introduced 

for processing arbitrary graph-structured data. These early models relied on iterative 

message-passing until convergence, which limited scalability. The breakthrough came with 

the integration of convolutional principles into graph domains, leading to Graph 

Convolutional Networks (GCNs) that aggregate local neighborhood information in a 

feedforward manner. This shift not only addressed efficiency but also aligned GNNs with 

the successful convolutional architectures of image analysis. 

Over time, several variants of GNN architectures have emerged [7]. Recurrent GNNs 

(RecGNNs) represent the earliest family, where node representations are iteratively updated 

until convergence. GCNs, both spectral-based and spatial-based, dominate current practice 

thanks to their efficiency and scalability. Graph Attention Networks (GATs) introduce an 

attention mechanism to weight neighbor contributions adaptively, while Gated Attention 

Networks (GaANs) refine this idea by incorporating gating mechanisms that regulate 

multiple attention heads, improving stability and interpretability in complex graph 

scenarios. Graph Auto-Encoders (GAEs) extend this paradigm for unsupervised 

representation learning, focusing on link prediction and graph generation. Spatial–

Temporal GNNs (STGNNs) add a temporal dimension to capture dynamic interactions in 

time-evolving systems, with direct relevance to applications such as traffic forecasting and 

dynamic routing. Applications of GNNs are diverse and extend across both structural and 

non-structural domains. Importantly, GNNs have begun to transform CO, where problems 

such as the TSP and the VRP can be modeled as graphs of customers and routes [6]. Despite 

their versatility, GNNs still face significant challenges [6]. Current research increasingly 

explores hybridization with reinforcement learning and metaheuristic strategies, 

particularly in the optimization of vehicle routing and logistics operations. 

The remainder of this paper is structured as follows. Section 2 presents the proposed 

methodology and its main components. Section 3 reports and analyzes the computational 

results. Section 4 concludes the paper and outlines directions for future research.  
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2. Proposed methodology 

In this section, we present the proposed deep learning approach. More specifically a simple 

hybrid of GRASP with BVND will be enhanced with a GINE model, which is a better 

version of GIN, since it adds an edge encoder to each message passing layer. I n the next 

subchapters each component of the scheme is explained.  

 

2.1 A Hybrid Metaheuristic 

Taking inspiration from [8] a GRASP procedure was hybridized with a BVND. The GRASP 

procedure following the quality-based scheme for the RCL – i.e. selecting elements based 

on travel cost 𝑐𝑖𝑗 between two nodes/customers 𝑖 and 𝑗 where 𝑐𝑚𝑖𝑛 ≤ 𝑐𝑖𝑗 ≤ 𝑐𝑚𝑖𝑛 +

𝛼(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) – will perform a greedy randomized construction. In other words, the 

method starts from the depot and assigns a route towards a node/customer that is selected 

randomly from the created RCL list. For the CVRP problem the feasibility of the specific 

selection is evaluated with capacity constraint. The procedure iteratively assigns customers 

to a route until the vehicle has no capacity left, so it returns to the depot. That is a closed 

loop. Then, it starts again with a new vehicle. All customers must be serviced and passed 

only once from a vehicle. When that happens the total cost of the solution – called initial 

solution – is computed.  

It should be noted that the majority of VRP problems have a 2D Euclidean edge weight 

type, which means the cost of (undirected) edges are computed by the Euclidean distance 

of their corresponding nodes. The nodes of a VRP problem are projected in a Cartesian 

plane with x- and y-axis with only positive values between 0 to 1 or 0 to 100. So, for two 

nodes 𝑖, 𝑗 with coordinates (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗)  that are connected, the distance/cost is 

𝑐(𝑖, 𝑗) = 𝑓𝑙𝑜𝑜𝑟 (√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + 0.5) 

where floor rounds down the value to the nearest integer. 

When the construction phase ends the initial solution is improved with a local search 

algorithm. A BVND was selected, which improves the solution by searching firstly the 

intra-route neighborhoods – i.e. changes in a route – and then inter-route neighborhoods – 

i.e. changes between routes. The procedure uses the 2-opt, swap and relocate for intra-route 

(with that order) and 1-0 exchange (moving a customer from one route to another) and 1-1 

exchange (switching customers between routes) for inter-route while respecting the 

capacity constraint. To be more precise the sequence follows this pattern: 

1. Intra-route VND: It runs 2-opt to convergence, then swap and then relocate. If 

anyone improves it keeps applying the same operator, then moves to the next 

operator. If there is no further improvement, then it follows the inter-route 

operators. 
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2. Inter-route VND: 1-0 exchange is applied with first improvement meaning that as 

soon as the cost is improved it restarts the specific inter-route operator. If there is 

no further improvement, then 1-1 exchange follows with the same procedure. 

3. After local-search loop, if the total cost is improved, the entire cycle is repeated. 

Otherwise, it stops. 

When the local-search loop breaks the solution is saved. Then the algorithm starts again 

with the construction of a new solution. If that solution is better, it is the new best solution. 

The procedure stops when exceeding the maximum iterations or time limit. 

 

2.2 A Hybrid ML Approach 

The concept of ISC introduced in [8] is a hybrid approach that predicts if a local-search 

algorithm should be applied to initial solutions constructed from a greedy algorithm like 

GRASP. That paper used a Random Forest as an ML classifier. 

In this paper a GNN will be used as a deep learning classifier, named edge-aware GIN - 

also called GINE – which will be trained with several features extracted from graphs of 

initial solutions. GINE incorporates edge features 𝑒𝑢𝑣 into the aggregation procedure by 

projecting them to the node hidden size either by a learned linear layer or an edge encoder. 

The linear projection that occurs is from a basic MLP. Thus, the new message passing 

update is expressed as: 

ℎ𝑣
(𝑙+1)

= 𝑀𝐿𝑃(𝑙) ((1 + 𝜖(𝑙)) ∙ ℎ𝑣
(𝑙)

+ ∑ (ℎ𝑢
(𝑙)

+ 𝑒𝑑𝑔𝑒_𝑀𝐿𝑃(𝑙)(𝑒𝑢𝑣))

𝑢∈𝒩(𝑣)

) 

The GRASP-VND metaheuristic will be enhanced with the GINE trained model. Then for 

each initial solution constructed the model will predict if the local search phase can run 

otherwise start the initial construction again. In that case some solutions will pass the 

classification and other will be denied. 

 

2.3 Model Architecture 

At the input stage, the model expects graphs, which include node features, edge indices, 

edge features, and a batch index to support mini-batch training. Before any graph 

convolutions are applied, node features are projected into a hidden-dimensional 

representation through a linear transformation. This ensures that the input is embedded into 

a common latent space that subsequent layers can process effectively. Let 𝑋 ∈ ℝ𝑁×𝑛𝑜𝑑𝑒_𝑑𝑖𝑚 

the input data where N is the number of nodes and node_dim the number of features per 

node. Before the convolutions it is transformed into 𝐻(0) ∈ ℝ𝑁×ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒. 
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The main body of the network consists of stacked GINE convolutional layers, each 

parameterized by a small MLP. This MLP follows the structure of a linear transformation, 

a ReLU nonlinearity, and another linear transformation, thereby allowing the convolution 

to learn complex transformations of messages passed between nodes. Each GINE layer 

updates node embeddings by combining information from neighboring nodes and the edges 

connecting them, which distinguishes it from simpler graph convolutions that only rely on 

node features. After every convolution, the model applies batch normalization to stabilize 

training, a ReLU activation to introduce non-linearity, and dropout to regularize and prevent 

overfitting. By repeating this sequence across multiple layers, the model incrementally 

enriches node representations with higher-order structural and feature-based information 

from the graph. Let 𝑒 ∈ ℝ𝐸×𝑒𝑑𝑔𝑒_𝑑𝑖𝑚 the edge embeddings where E is the number of edges 

and edge_dim the number of features per edge. Then the edges are linearly transformed to 

𝑒′ ∈ ℝ𝐸×ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 to match the dimensions of node embeddings. For a single node its 

embedding ℎ0
(0)

 is updated by the message passing layer. More specifically the node 

embeddings of neighbors of a single node – which are defined by different edge structures 

– are summed with their corresponding projected edge features (the ones that are connected 

with the 0 node in the example). Then the sum of all nodes is passed through ReLU and 

then the message is added to the ℎ0
(0)

, which is scaled by epsilon 𝜖. The new node 

embedding is passed to a linear transformation hidden_size →hidden_size, ReLU and 

finally another linear transformation hidden_size →hidden_size. That’s the convolution 

procedure. A Batch Normalization, another ReLU and Dropout Layer follow that give an 

embedding passed by one layer 𝐻(1) ∈ ℝ𝑁×ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒. That means the dimension doesn’t 

change between stacked GINEconv layers. 

Once the node embeddings have been updated, they are aggregated into a single graph-level 

embedding through global mean pooling. This operation compresses all node-level 

information into a single vector for each graph in the batch. Graph-level attributes are 

concatenated with the pooled embedding. Let 𝐺 ∈ ℝ𝑔𝑙𝑜𝑏𝑎𝑙_𝑑𝑖𝑚 be the global features where 

global_dim is the number of global features. The single concatenated vector after L layers 

is as follows 

𝑔 = 𝐶𝑂𝑁𝐶𝐴𝑇𝐸𝑁𝐴𝑇𝐸 (
1

𝑁
∑ ℎ𝑖

(𝐿)
, 𝐺

𝑁

𝑖=1

) , 𝑔 ∈ ℝℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒+𝑔𝑙𝑜𝑏𝑎𝑙_𝑑𝑖𝑚 

The resulting graph representation, enhanced by graph-level attributes, is then passed to a 

final linear readout layer. This layer produces class logits of dimension equal to the number 

of target classes (2), making the architecture suitable for supervised classification at the 

graph level. 

 

2.4 Model Training 
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The neural network requires labeled training data that will try to approximate them. These 

data are initial solutions generated from a GRASP procedure, which are labeled based on 

being promising or unpromising solutions for implementing local search algorithm. The 

labeled scheme can only be addressed by an iterative GRASP procedure. In each iteration 

the initial solution is saved. Then the VND proceeds with the local search phase and 

produces an improved solution whose improved cost is also stored with the corresponding 

initial solution. After some iterations the procedure stops. The improved costs are used to 

label the initial solutions as promising (1) and unpromising (0). A percentage 𝜆𝑝 of solutions 

with the lowest improved cost are labeled 1 and a percentage 𝜆𝑢 of solutions with the 

highest improved cost are labeled 0. The remaining solutions are discarded, so the training 

dataset includes only labeled data. In figure 1 the Outline of Initial Solution Classification 

can be seen. 

 

Figure 1. Outline of Initial Solution Classification 

 

The data essentially is a set of routes and a label. It also contains information about the 

CVRP instance, the node coordinates and demands, and the capacity and number of 

vehicles. From these data node, edge and global features need to be extracted. Here are the 

selected features: 

• Node Features: 

1. Normalized x coordinate for each node i named 𝑥𝑖 ∈ [0,1] 
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𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

2. Normalized y coordinate for each node i named 𝑦̂𝑖 ∈ [0,1] 

𝑦̂𝑖 =
𝑦𝑖 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

3. The demand/capacity of vehicle ∈ [0,1] 

4. The flag is_depot which is 1 id the node is the depot and 0 otherwise 

5. Normalized distance to depot 

𝑑𝑖𝑠𝑡_𝑑𝑒𝑝𝑜𝑡𝑖 =
√(𝑥𝑖 − 𝑥𝑑)2 + (𝑦𝑖 − 𝑦𝑑)2

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

where 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑚𝑎𝑥√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
is the diameter of the graph and 

(𝑥𝑑 , 𝑦𝑑) are the coordinates of depot 

6. The positional symmetry which addresses the position of a node in a route 

with being 0 if the node is in the middle of the route and 1 near the depot. 

More precisely 

𝑝𝑜𝑠_𝑠𝑦𝑚 = {

0, 𝑖𝑓 𝑑𝑒𝑝𝑜𝑡

2 |
𝑘 − 1

𝐿 − 1
− 0.5| , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where L is the length of the route (excluding depot) and k the position of the node in the 

route. By taking the absolute value, we include the undirected aspect of the problem 

• Edge Features: 

1. Normalized distance between nodes 𝑖 and 𝑗 

𝑑𝑖𝑠𝑡 =
√(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

2. The flag route_flag which is 1 if the edge belongs to the initial solution and 

0 otherwise 

• Global Feature: 

1. The normalized weighted mean centroid to depot distance of the routes r 

of the initial solution or WMCD 



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025 
 

                                                                                                                                 Pag. 417 / 444 
Article’s total number of pages: 14 

𝑊𝑀𝐶𝐷 = ∑ 𝑤𝑟

√(𝐶𝑟,𝑥 − 𝑥𝑑)
2

+ (𝐶𝑟,𝑦 − 𝑦𝑑)
2

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑅

𝑟=1

 

where R is the set of routes, 𝑤𝑟 =
∑ 𝑑𝑖𝑖∈𝑉𝑟

∑ 𝑑𝑗𝑗
, and the coordinates of centroid to depot of a 

route 𝐶𝑟,𝑥 =
1

|𝑉𝑟|
∑ 𝑥𝑖𝑖∈𝑉𝑟

, 𝐶𝑟,𝑦 =
1

|𝑉𝑟|
∑ 𝑦𝑖𝑖∈𝑉𝑟

 

The selection of the features is based on the idea of providing information about each 

instance (node features 1,2,3,4,5 and edge features) and each initial solution (node feature 

6 and global feature). 

A full connected graph would produce many edges that would be computationally costly 

for a single message passing layer, since the neighborhood of a node would be the whole 

graph. For that reason, a route k-NN edge strategy is selected, which builds the edge set as 

a union of two types of edges: 

• k-NN edges (directed): Each node is connected to its k closest neighbors using the 

x,y coordinates. These edges are directed, so if node A is among B’s neighbors, it 

means B→A but it’s not guaranteed that A→B. 

• route edges (bidirectional): Taken from the initial solution. Since the problem is 

undirected, they are bidirectional. If a neighbor B is connected to node A in the 

initial solution, then it denotes A↔B 

However, the message passed comes from the neighbor nodes and their corresponding 

directed edges. The route edges are applied to introduce neighbors that are outside the k 

closest neighbors but are connected in an initial solution. In that way more information is 

propagating through the graph. 

 

 

3. Computational Results 

The simple metaheuristic GRASP-VND and the enhanced version GINE-GRASP-VND are 

coded in Python along with the necessary utilities. The parameter alpha that is used for 

GRASP is 0.3 Some well-known and publicly available instances of CVRP are used to 

evaluate the proposed methodology. From the CVRPLIB repository [9] Set A 

(Augerat,1995) are used to verify the effectiveness of the ML approach. The following table 

gives information about each instance: 

Instances 1,6,7,11,12,13,16,18,19,23,26 and 27 from the table are selected for labeling. For 

each instance the GRASP-VND is run, to generate labeled data. 25% of the solutions with 

the lowest improved cost are labeled as promising solutions and 25% with the highest 
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improved cost as unpromising. The remaining 50% are discarded. The following table 

presents the number of labeled data per instance: 

Instance # of labeled samples 

A-n32-k5 81 

A-n37-k5 100 

A-n37-k6 101 

A-n44-k6 102 

A-n45-k6 100 

A-n45-k7 100 

A-n53-k7 128 

A-n55-k9 127 

A-n60-k9 150 

A-n63-k10 152 

A-n69-k9 177 

A-n80-k10 204 

Total 1522 

The total of 1522 labeled samples is fed to GINE model. 70% is used as the training set, 

20% as the validation set and 10% as the test set. The route k-NN edge structure is used 

with k = 14. The model consists of 4 layers of GINEconv with 192 hidden dimensions. A 

softmax function is used for classification, Cross-Entropy is the loss function and Adam is 

the optimizer. 

The neural network trained with labeled CVRP instances of node sizes 30 to 80 managed 

to classify correctly only 60.12% of the training samples. The method was first tested to 

assume its generality upon different sizes of nodes. It was found that instances with up to 

100 customers can provide the potential effectiveness of the method. 

After 68 epochs of total running time 15 min 52 s, the metrics are: 

• Cross-Entropy Loss = 0.6692 

• Classification accuracy = 0.6012, i.e. the model classifies correctly the 60.12% of 

the labeled samples 

• True Negatives (TN)= 632, i.e. the number of samples that are truly labeled “0” 

(unpromising) and are classified by the model as “0” 

• False Positives (FP) = 127, i.e. the number of samples that are truly labeled “0” but 

are classified by the model as “1” (promising) 

• False Negatives (FN) = 480, i.e. the number of samples that are truly labeled “1” 

but are classified by the model as “0” 

• True Positives (TP) = 283, i.e. the samples that are truly labeled “1” and are 

classified by the model as “1” 
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Since the training samples have perfectly balanced classes – i.e. 50% are “1” and 50% are 

“0” – precision, recall and f1 score for the class “1” are calculated as follows: 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
= 69.0%, i.e. 69% of the samples the model said were 

promising, are really promising. 

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
= 37.1%, i.e the model correctly identified 37.1% of all truly 

promising solutions 

• 𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
= 48.3%, i.e. the balance between precision and recall 

It seems that the trained model is better than a random guessing (50%) of running VND or 

not, since it identifies 60.12% of the samples. According to its precision metric, 31% of 

VND runs are wasted on solutions that won’t lead to better improved solutions. On the other 

hand, the recall metric point that it loses 62.9% of promising solutions meaning they never 

go through VND. 

Then the model was incorporated with the GRASP-VND and was compared with the simple 

metaheuristic with several instances and for the same run time. When applying the 

enhanced method to a large size instance it provided a significant improved solution than 

the simple metaheuristic, suggesting that it exists room for improvement. 

instance GRASP-VND GINE-GRASP-VND 

 
Mean GAP 

% 
Mean GAP % Accuracy TN TP FN FP 

A-n32-k5 1,218 0,746 0.63 29 22 19 11 

A-n37-k5 4,118 2,997 0.51 49 2 48 1 

A-n37-k6 3,172 3,904 0.584 45 14 37 5 

A-n54-k7 5,047 4,640 0603 50 32 36 7 

A-n80-k10 10,990 11,058 0.623 58 69 32 45 

M-n101-
k10 

20,213 15,890 0.669 65 83 49 56 

 

 

4. Conclusions 

This paper investigated a hybrid machine learning approach for enhancing a classical 

GRASP–BVND metaheuristic for the CVRP. The proposed method integrates an edge-

aware GINE as an ISC that predicts whether a GRASP-constructed solution is promising 

enough to justify the application of a Variable Neighborhood Descent local search. The goal 

is to reduce unnecessary local search calls while preserving, or ideally improving, solution 

quality. 



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025 
 

                                                                                                                                 Pag. 420 / 444 
Article’s total number of pages: 14 

The GINE classifier was trained on labeled initial solutions generated by GRASP–BVND 

on CVRP instances with 30 to 80 customers from the Augerat Set A. Using a balanced 

labeling scheme, the model achieved a classification accuracy of around 60% on held-out 

data, which is only moderately better than random guessing on balanced classes. The 

precision of the “promising” class shows that a non-negligible fraction of local search runs 

is still wasted on unpromising solutions, while the low recall indicates that many promising 

solutions are incorrectly filtered out and never improved by VND. 

When the trained classifier was embedded into the GRASP–BVND framework and tested 

under equal time limits, the results were mixed. On a larger instance, the enhanced method 

yielded a noticeably better solution quality, suggesting that selective local search guided by 

a learned model may become more beneficial as instance size grows and the cost of local 

search increases. 

Overall, the study provides an initial proof-of-concept that GNN-based classifiers can be 

integrated into metaheuristics for VRPs, but also highlights several limitations. The current 

feature set and labeling strategy appear insufficient to obtain a high-quality classifier, and 

the resulting accuracy is not yet strong enough to consistently improve the metaheuristic on 

standard benchmark instances. Future work should therefore focus on designing richer 

graph and route features, exploring alternative labeling schemes (e.g., using continuous 

improvement scores or cost-sensitive thresholds), and experimenting with more advanced 

architectures or training procedures, such as cost-aware losses or ensemble methods. In 

addition, extending the approach to larger and more diverse VRP variants, and integrating 

it with other learning components (e.g., learned neighborhood selection or adaptive 

parameter control), may further unlock the potential of machine learning–driven 

metaheuristics for real-world routing applications. 
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